Heat Transfer Modeling Software for Advanced Simulation
Analyze heat transfer by conduction, convection, and radiation with the Heat Transfer Module, an add-on product to the COMSOL Multiphysics® platform. The Heat Transfer Module includes a comprehensive set of features for investigating thermal designs and effects of heat loads. You can model the temperature fields and heat fluxes throughout devices, components, and buildings. To examine the real-world behavior of a system or design virtually, easily couple multiple physical effects in one simulation with the multiphysics modeling capabilities included in the software aruba certified design expert (acdx).
Specialized Features for Heat Transfer Analyses
Conjugate Heat Transfer and Nonisothermal Flow
The Heat Transfer Module contains features for modeling conjugate heat transfer and nonisothermal flow effects. These capabilities can be used to model heat exchangers, electronics cooling, and energy savings, to name a few examples.
Both laminar and turbulent flow are supported and can be modeled with natural and forced convection. It is possible to account for the influence of pressure work and viscous dissipation on temperature distribution. Turbulence can be modeled using Reynolds-averaged Navier-Stokes (RANS) models such as the k-ε, low-Reynolds k-ε, algebraic yPlus, or LVEL turbulence models. The realizable k-ε, k-ω, shear stress transport (SST), v2-f, and Spalart-Allmaras turbulence models are available when combined with the CFD Module.
The temperature transition at the fluid-solid interface is automatically handled using continuity, wall functions, or automatic wall treatment, depending on the flow model. Natural convection can be easily accounted for by activating the Gravity feature.
A nonisothermal flow modeling example of using COMSOL Multiphysics and the Heat Transfer Module.
Thin Layers and Shells
For modeling heat transfer in thin layers, the Heat Transfer Module provides specialized layer models and layered material technology to easily define complex configurations and investigate heat transfer in layers that are geometrically much smaller than the rest of a model. This functionality is available for thin layers, shells, thin films, and fractures.
For individual layers, the thermally thin layer model is used for highly conductive materials in situations where the layer contribution to the heat transfer is primarily in its tangential directions and where the temperature difference between the layer sides is negligible. Conversely, the thermally thick layer model can represent poorly conducting materials that act as a thermal resistance in the shell's perpendicular direction. This model computes the temperature difference between the two layer sides. Finally, the general model provides a highly accurate and universal model, as it embeds the complete heat equations. Layered material features support similar heat loads to the regular domain model. In particular, heat sources and sinks can be defined on layers or at layer interfaces, and heat flux and surface-to-surface radiation can be defined on both sides of the shells.
When employing the layered material technology, there are preprocessing tools for detailed layered material definition, load/save of layered structure configurations from/to a file, and layer preview features. Additionally, tools are included to visualize results in thin, layered structures as if they were originally modeled as 3D solids; specifically, surface plots, slice plots, and through thickness plot are supported. The layered material functionality is included in the AC/DC Module and the Structural Mechanics Module, making it possible to include multiphysics couplings like electromagnetic heating or thermal expansion on layered materials.
Surface-to-Surface Radiation
The Heat Transfer Module uses the radiosity method to model surface-to-surface radiation on diffuse surfaces, mixed diffuse-specular surfaces, and semitransparent layers. These are available in 2D and 3D geometries, and in 2D axisymmetric geometries when modeling diffuse surfaces. The surface and ambient properties may depend on temperature, radiation wavelength, or any other quantity in the model. Transparency properties can also be defined per spectral band (and an arbitrary number of spectral bands is supported).
Predefined settings are available for solar and ambient radiation, where the surface absorptivity for short wavelengths (the solar spectral band) may differ from the surface emissivity for the longer wavelengths (the ambient spectral band). In addition, the sun radiation direction can be defined from the geographical position and time.
The view factors are computed using the hemicube, the ray-shooting, or direct integration area method. For computationally effective simulations, it is possible to define planes or sectors of symmetry. When combined with a moving frame, the surface-to-surface radiation interface automatically updates the view factors as the geometrical configuration deforms.